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Analysis and Linearization of a Broadband
Microwave Phase Modulator Using

Volterra System Approach
Patrick Celka, Member, IEEE, Martin J.

Abstract— In thk paper, a Volterra system approach is em-
ployed to analyze a nonlinear delay line that is used as a
broadband phase modulator. Computed response waveform of
the modulator in the time domain is compared with experimental
results iu order to confirm the Volterra system approach. The
phase versus voltage characteristics of the modulator is then
linearized using a predistortion circuit in which the param-
eters are derived from the Volterra kernels. Harmonic and
intermodulation distortions are calculated with and without the
predistortion circuit. It is shown that the use of the predistortion
circuit results in a considerable reduction of these distortions.

I. INTRODUCTION

BROADBAND PHASE, modulators have numerous ap-

plications in both microwaves and telecommunications
[1]-[4]. For the transmission of analog signals, the linearity
of the modulator becomes the primary concern. The phase
modulator studied in this paper is a nonlinear delay line. It
consists of a high-impedance transmission line, periodically
loaded by a number of reverse-biased hyperabrttpt varactor
diodes at regular time intervals r. The varactor diodes act as
variable shunt capacitances, providing a variable delay of a
signal propagating on the line as a function of the applied

voltage.
Such nonlinear transmission lines are used to generate

electrical pulses with rise times in the order of few picosecond
[5]-[8] and can also be employed as a broadband phase mod-
ulator. Superimposing on the line a carrier with a modulating
signal and a proper dc bias results in phase modulation [5].
Due to the nonlinear nature of the C-V curve of a varactor
diode, the phase versus voltage characteristics of the delay
line are also nonlinear. For small variations of the voltage on

the line, the nonlinearity is relatively mild and the Volterra
series can be used to study the dynamic characteristics of the
phase modulator.

After the characterization of the phase nonlinearity, a
predistortion circuit is proposed to reduce the second and
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third order harmonics (llDz, IlD3) and intermodulation
(1A4D20, 11blD21) distortion produced by the modulator.

The paper is organized as follows. The second part of the
paper is mainly devoted to describe the phase modulator as
well as the model and parameters representing the varactor
diodes. In the third part, Volterra kernels are computed up to
the third order and the time response of the modulator of a
sine wave input is computed and compared with experimental
results. The fourth part of the paper describes the predistortion
circuit and results of the Volterra system model, showing

the improvement in the overall linearity and the reduction of
INlD20 and IikfD21.

II. THE PHASE MODULATOR

The structure of the phase modulator is depicted in Fig. 1.
A high-impedance (Z.) transmission line is loaded by Al – 1
reverse-biased GaAs hyperabrupt varactor diodes at regular

time intervals ~. The structure is referred to as the traveling
wave phase modulator (TWPM). By properly choosing the

parameters of the TWPM (Zc, T, iW), relatively low insertion
loss and small input and output VSWR is obtained. In the
experimental modulator, 50 varactor diodes were used to load
a 90-0 microstrip transmission line at regular time intervals of
30 ps on a teflon substrate. A 10-dB chip attenuator is used at
the output for reducing eventual reflections. It should also be
pointed out that in the experimental phase modulator, statistical
dispersion in the capacitance versus voltage characteristics of
the 50 diodes were relatively important.

The TWPM can be considered as a cascade of ill – 1 basic
units (cells), each one consisting of a piece of transmission
line Ti (whose length is defined by r), shunted by the varactor
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Fig. 2. Equivalent circuit of a piece of transtuission line shunted by a
varaetor diode.

TABLE I
PARAMETER VALUES

&[Q]] RL [Q]I -W~] I C4kJF]] % [Q]
50 50 2.7 0.3 1.5

L.. [~~] I Rj [~Q] ] @[v]] T I coIP~]
0.45 1 1.3121 10.5

diodes Di. Fig. 2 shows the equivalent circuit of one of these

basic units.

The capacitance and inductance of the piece Ti are Cl and
L, respectively. The overall cutoff frequency of the line is
given by: ~C % 1/T ~’. The cutoff frequency of
the TWPM is about 4.9 GHz with parameter of Table I. The

model parameters of the hyperabrupt varactors of Fig. 2 are

defined as [9]: ‘

R.,
L
R;
Cj
(70
Y

@

substrate and bond resistance;

series inductance;
p-n junction resistance;

junction capacitance;
projected zero bias voltage capacitance;
junction doping profile exponent;
junction built in potential.

Within a limited interval, the junction capacitance Cj of a
varactor diode as a function of the applied reverse voltage U

can be approximated by

C(J
c~(u)= (1+ u/@)-f“ (1)

In Fig. 3, relation (1) represents the straight line. For
hyperabrnpt GaAs junctions, the exponent ~ is approximately
2 and the junction built in potential @ = 1.3.

The curve of Fig. 3 shows an average capacitance versus
bias voltage V: for 50 packaged varactor diodes. It should be

pointed out that the measured C-V characteristics of 50 var-

actor diodes presented significant dispersion in some regions

(>50 %), but for the Volterra series analysis the averaged

curve of Fig. 3 and the relation (1) are used, Relation (1) is
valid for values of V: between 2.7 and 4.7 V (Fig. 3). Table I
summarizes the values of the parameters that are used for the
Volterra system model of TWPM.

These values are obtained through a series of measurements
(dc and S-parameter) on a number of varactor diodes. Pre-
liminary studies based on the calculation of the scattering

parameters of the whole structure (TWPM) have permitted
the optimization of the parameters of the transmission line
Z. and T and the number of varactors ill – 1 to insure
low input and output VSWR. It appears that the actual value

of series resistors Rc, is higher than the value taken from

the calculations, which is responsible for the slightly higher
insertion loss in the experimental results. The complete model

of the TWPM is illustrated in Fig. 4.
The input signal e(t) is composed of a carrier signal SC, a

modulating signal Sm, and a dc bias voltage V:. Due to the
ladder structure of the circuit, recurrence relations between the
currents and voltages at different nodes can be established and
the Volterra kernels for the output voltage can be calculated.

III. THE VOLTERRA SYSTEM APPROACH

We will show that the Volterra system theory [10] is a

powerful tool and can be used to analyze the behavior of

the circuit, characterize its nonlinearities, and calculate the

intermodulation products. The Volterra series expansion of one
variable of the circuit has normally an infinite number of terms.
Depending on the nature of the nonlinearity and the accuracy
of the approximation we want to reach, a limited numbelr of
terms can be used, and we thus get a polynomial system. In
the present case we truncated after the third term giving rise to
a third-order polynomial system. This approximation will be
justified by the good correspondence between the model iind
the measurements done. Each term of the truncated serie is
characterized by its kernel, which in turn can be defined either
in the time or Laplace domain. We use the Laplace domain
representation and define the three kernels related to the output

voltage U..t (p) by: I& = I&), n = 1, ..., 3. Once we
have computed these kernels, temporal responses and output
phase characteristic of the TWPM will be evaluated. In order
to give some hints about the Volterra kernels computation,
we introduce the following notation according to the circuit

of Fig. 4: H$)(pl, . . . ,pn) is the nth-order kernels of the

kth cell voltage uk, Gp) (PI,. . . .pm) the nth-order kernel of

Jk and J$)(pl,. . . , pn ) the nth order-kernel of the charge

Qk in the kth nonlinear capacitance Cj. The charge is given
by Qk (~k ) = Cj (~k) uk s h(~k). A third-order Taylor

expansion of the function h(U) around V} is given by h(~) =
X~=l an(V~) AUn with U = V: + AU, where a.(”V~)
represents the coefficient of the nth term of the polynomial
approximation of h(U). These coefficients vary as a function
of the bias and so do the Volterra kernelsl. From h(V), we

can compute the following relations between Jp) (pl, . . . .pm)

= (@#(pi)

= alHf)(pl, p2) -1-a2Hf)(Pl)H$)(p2)

= a]fff)(~l,~2,~3) + ~2(~[1)(~l)~f)(~2,p3)

+ q]) (P3)Hf) (Pi>P2))

+ aJ7~1) (pl)ll~) (p2)i7f) (p3). (2)

1Explicit dependence in H$~/ = H$ ) expressions on Vrowill be avoided
in later sections.
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Fig. 3. Typical capacitance variation of a hyperabrupt
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Fig.4. The model TWPM.

The voltage applied to one diode is U and the current is
ID = IDCJ+IDR, where IDcj is the current across the capaci-
tance (77 and IDn. is the current across the resistance R i; thus,

where Uj is the voltage applied to Cj only. Neglecting the
current across the resistor Rj, we can define the impedance of
the linearized diode as ZD = U/IDc,. Finally the impedance

ZD [P] = (R.. + Lp) + Rj/(l + paIRj) in parallel with
the two impedance Cl will be called ZDT. Due to the
ladder topology of the circuit, we can establii~ the following

reccurence relations between2 G~~l and Hk .

2The square bracket [p] refer to Laplace argument p in impedances like
quantities.

With Px(n) = x~=l p~ we get the following reccurence
relations:

H,fl Pl, ”””, Pn )

.–14!1(P1, ”””, Pn) – GP)(P1, “ “ . ,Pn)zTbx(n)] (3)

G$;l(P1, “ “ “ ,Pn)

—
–Gf)(PN=,Pn ) – JfqPl, “““,Pn)Pz(n). (4)

with ZT ~] = Lp. In (4), the term alp represents the inverse
of the impedance of ’the linearized diode and must be replaced
by I/ZD ~] as we have mentioned above. These relations
will be useful in the computation of the second- and third-
order kernels. Let us define the following matrices in order to
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simplify the notation for the kernels:

We are now ready to compute the Volterra kernels 11$).

The first order kernel is simply the impulse response of the
(1) – HJ~~ = UM/Elinearized circuit and is given by HM –

where E is the input signal in the Laplace domain. The relation
between the vector (Ul II )T and (UM lM)T is

(7)

and the boundary conditions on the circuit are

U. =Ul +IIZT (8)

E = UO+ RsI1 (9)

UM = RLIM (lo)

and thus with (7)–( 10) we get

The second-order kernel is computed with (2)–(4) and we
obtain

( o )+ a2m(2J @l) (m)ff~) (p2) “
(12)

The boundary conditions on the second-order kernels are
(z) = H~2) + G~)zTbx12)l andHj2) = –RsG~) , Ho

H(2) = R~G~), so we get the relation between G!) and

‘2) This last expressionHp: H(z) = –(RS + zTbE(2)l)Gl .

with (12), computed for k = 1, gives the result for the

second-order kernel

@#(w J2)

{

(Rs + ZT~x(2)])PlG + Pl~— —— .-
Afi-1~1,112] + (% + ZT~Z(2)])A#-1b1, P2]

}

with the polynomials PIG and PIH given by

To calculate the third-order kernel, the same procedure as
for the second-order gives the final result, shown in (16) at

the bottom of the page, with the polynomials ~zG and JpZH
given by

M–2

f’2G = ~ T:(2, 2)(v2n+~ + v3n+~) + v2~ + v3~ 1(17)
n=l
M–2

P2H = ~ T;(1> 2)( V2.+1 + V3.+1). (18)
n=l

If we introduce the notation H;) (pi, p2) =
—

~b1,p2]Hi)(p1)Hl)(p2), we have the relations

(19), (2o) for polynomials V2~~1, P2, P3] and V3~k1, PZ, P3]

v3k = a3p~(3)Afi-k~l] Afi-k~z]Afi-k~3] (19)

V2k = a2px(3){Afl-k bd(-#i-k b2,~3]~b2, P3]

+ P# b2, P3] + P;&) b2 )P31)

+ Afl-k@3](Afi-k~ 1,~2]~~1, ~2]

+ &kljP21 + P%1>P21)}. (20)

The POlyIIOmidS l’2G,l’2fI,PIG, and PIG in Pk are func-

tions of the parameters of Table I and of the coefficients

an(VrO),n = 1, . ...3. The output voltage in the time domain,

uOUt(t) is the sum of three terms depending on the VoherIa

kernels h~~(tl,... ,t~) = L-l[H$~(pl,... ,pm)] and the
input signal e(t): uOUt(t) x U1(t) + U2(t) + u3(t) where

un(t)=
/
‘mhf$@l,...,(Tn)e(t- (7,)

~.::(t–on) (A71~,. dun (21)

for n = 1,2,3. In order to compute the nth-order time

response u~ (t), we have to evaluate one inverse multiple

Laplace transform Z–l of the kernel H$! (pl, ..-, p~) and

{

(Rs + ZT~=(3)])P2G + PZJII
Hy(Pl,P2) = –

}

X H;) (P1)H:) (p2)f&) (P3) (16)
@f-1~1,~2,~3] + (& + zT~Z(3)])&-1bl, p2, P3]
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FI,g. 5. Calculated results showing the formation of shock waves in TWPM (.fo = 1 GHz). The bold line is the input and the square marked line
is ‘the output signal.

n integrals. We can simplify this by using the so-called
associated transform [10, Theorem 2.7]. The Laplace transform

of the output voltage can be written by the sum of the
following three terms:

u..,(p) = U1(P)+ ~2(P) + U3(P) (22)

where

WI(P) = @:\(P)~(P) (23)

UZ(p) = J#2)(pi,p–pl)~(pl)~(p–PI) @l (24)0 Ut

r

us(p)=
/ H&b)P2 –PI?P – P2)Jwl)

rxr
. ll(p~ – PI)E(P – PZ) dpl dpz (25)

and r is the imaginary axis. The relations (21 )–(24) will be
used to calculate the response of the modulator in the time
domain. They require only n – 1 integrations for the nth-
order term and one simple Laplace transform E(p) = L[e(t)]
and inverse Laplace transform uout (t) = L–l [Uout(p)]. The
nth-order kernel is proportional to the product of n first-order
kernels as it can be seen from (13) and (16). Moreover the T,
are symmetrical in p~, so the nth-order kernel is symmetrical
in p~. This property allows us to reduce the computation
complexity.

IV. TIME DOMAIN RESPONSES

Several authors [7], [11]–[1 3] have studied the formation
of shock waves on the nonlinear delay line of Fig. 1. To

ensure that the third-order Volterra model describes the circuit
behavior correctly, the time domain response of the circuit is
calculated and compared with the experimental results. First
relations (21 )–(24) are used to compute the response in the
frequency domain. The temporal response is then obtained by
inverse Fourier transformation. At a dc bias of 4 V, a 1.5 V

peak-peak sine wave is fed on the line. The calculated and

experimental results are shown in Figs. 5 and 6, respectively.
Keeping in mind that the experimental results are obtained

with an additional 10-dB attenuation and that the phase dif-
ference was adjusted manually to about 180° in order to
clearely observed both waveforms, a closer look at Figs. 5
and 6 reveals that the calculated and measured results are in
good agreement.

The compression phenomena has already been observed by
Rodwell et al. [5], [6], [8], Freeman and Karbowiak [12], Jager
and Tegude [13] or Camacho-Pefialosa and Molina-Fernandez
[14] . A comparison with results of [14], in which they use a

harmonic balance analysis, and those of [13], in which they

use partial differential equations, also confirms that the third-
order Volterra model can correctly represent the behavior of
the delay line, provided the applied signals are limited to the
region where the junction capacitance of the varactor diodes
can be represented by (1). The oscillations shown in the output
waveforms of [14] and [13] could also be reproduced with
the Volterra kernels using smaller values of RC$, lower input
frequencies f., and small values of the bias point V:.

V. PHASE MODULATION

Here, the input signal e(t) is composed of a carrier signal

S.(t) = V. cos(qt) and a bias voltage V:. The carrier
frequency ~. is an important parameter and should be cho-
sen far away from the cutoff frequency. As it was already
mentioned, the Volterra kernels depend on the bias voltage

H$j = 11~~~(V:). Phase modulation is characterized by
calculating and plotting the phase p of the output signal as a
function of the bias voltage V:, for a given carrier frequency.
The output signal S(wo) in the frequency domain that can be
calculated from relations (21 )–(24) is given by

cc

‘(wO) = ~ Cn(VrO,W())= soe~~(v;,wo) (26)
77=1
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Measured results showing shock wave formation in TWPM (.fo = 1 GHz).Fig. 6.

with $0 = wo/2n It is noted that for the carrier frequencies of 1 and 2 GHz

the calculated results are in close agreement with measured
ones. At 3 GHz the discrepancy between the two results
become more important, which is mainly due to the increase
of dispersion in the experimental delay line. Same type of
nonlinearity is observed in both results, which of course in a
multitone phase modulation scheme will produce harmonics
and intermodulation products. The next section is devoted to
the study of these distortions.

(27)

With the Voltema series being limited to the third order, we
obtain

VI. HARMONIC AND INTERMODULATION DISTORTIONS(28)

()C2= : 2HH(WO ,@Jo)
Distortion produced by TWPM are high order harmonics

(Hlla and Illls) and intermodulation products (Iiklllzo and
IiklD21 ), which are studied in this section using the usual
two-tone test.

(29)

(30)

c. xO” for n>3. (31)

The coefficients Cm depend on the bias voltage and the

carrier fi-equency. Finally, the phase is obtained by

A. Harmonic Distortions

Assuming a bias voltage V:, the phase at the output which is

defined by (16), is approximated by a Taylor series expansion
around V:. For a given input signal E(t) = S.(t) + V:, the
phase can be written as

v(VS, WO) =Arg[cl(@, Wo) + c2(v~, WO) + G(V:, WO)].

(32)

Fig. 7 shows the normalized phase at the output of TWPM
as a function of the bias voltage for three different frequencies
and an input signal of 100 mV peak to peak.
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or

co

P(w> L’, ~)= ~ cl Cos(lwot) (34)

1=0

where p(~) s dk/d(V~)k
After some algebra [see Appendix A, (A1)–(A3)] the har-

monic distortion terms HD2 and HD3 are found, and given
by the following:

and

HD3 =
p(s)(v:)v:

24p(l) (V:)VT + 3@3)(V:)V: “
(36)

Once again the coefficients ~(~) (V:) depend on the Volterra
kernels [see Appendix A, (A1)-(A3)].

B. Intermodulation Distortions

For calculating IMD20 and IMD21, a two-tone test is
employed [9]. The same conditions as in Section III-D are

assumed with the only difference that SC(t) is composed of
two signals of slightly different frequencies

s=(t) = v.(cos(2mflt) + cos(2Tf~t)). (37)

The phase is now given by

P(v., v:, ~) = 5 C~ COS((2mT~l + 217r~2)t). (38)

k=lml+lq=o

The coefficients C’~, which are calculated in Appendix B,
enable us to define the IMD’s. Finally

VII. PREDISTORTION CIRCUIT

In this section we study a predktortion circuit, which when
used with TWPM, will result in an improvement of the
linearity and consequently in an important reduction of the
distortions.

A. Design of the Predistortion Circuit

Once again, (16) is replaced by a second-order Taylor
expansion P2 (Vro,V.*), around a bias voltage VT*. It can
be shown that there exists an optimal bias point where the
mean square error between the calculated and approximated

phase IIP(V:) – PZ (VS, v: ) II~, is minimum (Fig. 8). This
optimum bias is then chosen for further developments.
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The following is the second-order Taylor approximation of -20

the theoretical curve of Fig. 7 for ,fO = 2 GHz -40

l’2(1/’:, v:) = W(vr”) + p@)(vr*)(v:– VT*) -60

~

+
P(2)(W) @ _ vr*)2

2(
(41) ; .;

or

~2(v:, v;) = Qo + alv: + a2(v:)2. (42)

The optimal bias point is V.* = 4.469 V. The polynomial
coefficients ai in (23) depend on the Volterra kernels. The
next step is to find a voltage transformation V} -+ ~~ (V:
being the distorted voltage), such that the new phase @(V~) ‘g 9

is approximately linear, i.e., @(V~) x b. + bl~~. In the bias
interval [VrO_,V,o+] one obtains

4 4.1 4.2 4.3 4,4 4.5 4,6

Distorted bias voltage Pj[Volt]

The phase variation as a function of the predistorted bias voltage I?$

bo = 9W+)W – P(W-)W+
v:_ – v:+ (43)

~

bl = W?!-) – WW:+)
(44)

-1oo’

v:_ – v:+ “ gj !c

By taking @(~~) % P2(V:, V,*) with V; being the optimal

bias, it is easy to show that the desired transformation is given
by -200

0 20 40 60 80
m~0/0

100

V; = V: + k(V~ – V~i*)2 (45)

with

k=?

r.q-bo
V~i~ = —

0!2 “

If we assume that the transformation

for ac voltages, we can decompose the
VO and ac V& part: V = VO + Vat, and when in (26) V: is frequency of 2 GHz

replaced by V the following is obtained: As a consequence of improvement in the linearity of the
modulator by the predistortion circuit, an important reduction

V = (V”+ kAV2) + V.C(l + 2kAV) + kV:C (48) in the intermodulation products is achieved. For instance for

a modulation depth md = 20%, a decrease of about 70 dlElin
or IMDzO and more than 125 dB for IMDz1 is obtained.

Fig. 10. Comparison of the intermodulation products IMD20 (~) and
IMD21 (o) between the linearized and the nonlinearized modulators.

(46) B. Evaluation of the Lineari~ with the Predistortion Circuit

In this section the intermodulation products (IMD20 :and

(47) IMD21) are calculated from (21) as a function of the modu-
lation depth md (with respect to AV = 300 mV) around the

in (26) is also valid optimum bias voltage. Fig. 10 shows these products for tloth

voltage V into a dc the linearized and the nonlinearized modulators, for a carrier

v =Vdc+ Aovac + Alv;c. (49)

The AV, which is given by AV = VO– Vmin,is determined

by the maximum amplitude of a modulating signal to insure a
peak phase excursion within the voltage range of 2.7-4.7 V.
The modulating signal S~ (t) goes first through a predistortion
circuit before getting combined with the carrier signal Sc (t)
and fed into the modulator. The linearized phase for .fO =
2 GHz, V$ = 4.469 V, k = –0.735 and Vmin = 4.345 V
(resulting in the following predistortion coefficients: Vd. =
4.578 V, A. = 0.559 and Al = –0.735 V–l) is shown in
Fig. 9.

Obviously with predistortion the linearity of the modulator
improves considerably. In the next section the IMD’s with
and without the predistortion circuit are calculated.

VIII. CONCLUSION

We have used the third-order Volterra series to analyze the
behavior of a broadband microwave phase modulator, which
is principally a nonlinear delay line. The modulator consists
of a high-impedance transmission line shunted by a number
of hyperabrupt varactor diodes at regular time intervals.

The structure is analyzed in both the time and frequency

domains and results are in good agreement with the measure-
ments. A method based on the Volterra kernels is used to
calculate the harmonic and intermodulation distortions. After
characterizing the nonlinearity of the phase versus voltage, a
predistortion circuit is proposed to linearize this characteristic.
A simple method is then presented to determine the parameters
of the predistortion circuit. Analysis of the modulator with the
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predistortion circuit reveals the improvement in the linearity
and decrease of the intermodulation products.

APPENDIX A

Relations defining harmonic distortions are derived here.

With the following notation ~(V~) E ~(V~, WO) and Fi s
p(;) (Vj)/z!, one can find the expression for C21 and C2Z+1

cc 03

C21= ~ F2i Vr2ia$) and CZV+I = ~ Fm+l VT2i+16(2i+l)
21+1

(Al)

where the coefficients a21‘n) and h$~l are given by the recur-
rence law

(A2)

and

d(l)=2 for 1=0

a(l)=l for 1=1, . . ..2–1

a(l) =0 for 1 = i. (A3)

The initial value for the iterative calculation of (A2) is a$) =
1. The harmonic

frequency k fo is
distortion of the phase associated with the
defined by the following

(A4)

APPENDIX B

The expressions for 1A4Ds that are derived here refer to
Section III-D. The same notations as in Appendix A are taken
here. In its most general form of the phase of the output signal
in a two-tone modulation scheme is given by

. cos((2mnfl + 21mf2)t)
02 2k+l

+ ~ &k+lv:k+l ~ $2k+l)
Imllll

k=o @]+121=2i+l
i=o,..., k

. cos((2rrMr f ~ + 2h’rf2)t) . (Bl)

A more closed form of (B 1) is given in (38) where the
coefficients Gk, k = Im I + Ii1, are defined as

- 5’2kK2kz ill, (B’)c2n=lml+lll –

k=n lrnl+]ll=2n

and
cc

k=n lrnl+ll[=2n+l

(B3)
The following terms defining cf~)l,1, are used to calculate

(3) = 3/4, CIO‘3) = 9/4. The(z) = 1, C$) = 1/4, C21
coo
intermodulation distortion of order (m, 1) or llkfDmz is given
by the following relation:

[1]

[2]

[3]

[4]
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[6]

[7]
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[9]
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[11]

[12]

[13]

F $’kv$+)l111

k=lml+lll

IMDml = k‘old’” (B4)

~ FkV:c~)
k=l

k odd
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