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~ Analysis and Linearization of a Broadband
Microwave Phase Modulator Using
Volterra System Approach

Patrick Celka, Member, IEEE, Martin J. Hasler, Fellow, IEEE, and Ataollah Azizi

Abstract—In this paper, a Volterra system approach is em-
ployed to analyze a nonlinear delay line that is used as a
broadband phase modulator. Computed response waveform of
the modulator in the time domain is compared with experimental
results in order to confirm the Volterra system approach. The
phase versus voltage characteristics of the modulator is then
linearized using a predistortion circuit in which the param-
eters are derived from the Volterra kernels. Harmonic and
intermodulation distortions are calculated with and without the
predistortion circuit. It is shown that the use of the predistortion
circuit results in a considerable reduction of these distortions.

J. INTRODUCTION

ROADBAND PHASE. modulators have numerous ap-

plications in both microwaves and telecommunications
[1]-[4]. For the transmission of analog signals, the linearity
of the modulator becomes the primary concern. The phase
modulator studied in this paper is a nonlinear delay line. It
consists of a high-impedance transmission line, periodically
loaded by a number of reverse-biased hyperabrupt varactor
diodes at regular time intervals 7. The varactor diodes act as
variable shunt capacitances, providing a variable delay of a
signal propagating on the line as a function of the applied
voltage.

Such nonlinear transmission lines are used to generate
electrical pulses with rise times in the order of few picoseconds
[51-[8] and can also be employed as a broadband phase mod-
ulator. Superimposing on the line a carrier with a modulating
signal and a proper dc bias results in phase modulation [5].
Due to the nonlinear nature of the C-V curve of a varactor
diode, the phase versus voltage characteristics of the delay
line are also nonlinear. For small variations of the voltage on
the line, the nonlinearity is relatively mild and the Volterra
series can be used to study the dynamic characteristics of the
phase modulator.

After the characterization of the phase nonlinearity, a
predistortion circuit is proposed to reduce the second and
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Fig. 1.

Circuit diagram of the TWPM.

third order harmonics (HDs;HD3) and intermodulation
(IM Do, IM Do) distortion produced by the modulator.

The paper is organized as follows. The second part of the
paper is mainly devoted to describe the phase modulator as
well as the model and parameters representing the varactor
diodes. In the third part, Volterra kernels are computed up to
the third order and the time response of the modulator of a
sine wave input is computed and compared with experimental
results. The fourth part of the paper describes the predistortion
circuit and results of the Volterra system model, showing
the improvement in the overall linearity and the reduction of
IMD20 and IMDQl.

II. THE PHASE MODULATOR

The structure of the phase modulator is depicted in Fig. 1.
A high-impedance (Z.) transmission line is loaded by M — 1
reverse-biased GaAs hyperabrupt varactor diodes at regular
time intervals 7. The structure is referred to as the travelling
wave phase modulator (TWPM). By properly choosing the
parameters of the TWPM (Z,, 7, M), relatively low insertion
loss and small input and output VSWR is obtained. In the
experimental modulator, 50 varactor diodes were used to load
a 90-{) microstrip transmission line at regular time intervals of
30 ps on a teflon substrate. A 10-dB chip attenuator is used at
the output for reducing eventual reflections. It should also be
pointed out that in the experimental phase modulator, statistical
dispersion in the capacitance versus voltage characteristics of
the 50 diodes were relatively important.

The TWPM can be considered as a cascade of M — 1 basic
units (cells), each one consisting of a piece of transmission
line T; (whose length is defined by 7), shunted by the varactor
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Fig. 2. Equivalent circuit of a piece of transmission line shunted by a
varactor diode.

TABLE 1
PARAMETER VALUES
R[] | RLIOQ] | LnH) CilpF] | Res [9Q]
50 50 2.7 0.3 1.5
Les [nH] | R; [MQ] | ®[V] | v | Co[pF]
0.45 1 1.3 |2 10.5

diodes D;. Fig. 2 shows the equivalent circuit of one of these
basic units.

The capacitance and inductance of the piece T; are C; and
L, respectively. The overall cutoff frequency of the line is
given by: f. = 1/x+/L(C; + C)). The cutoff frequency of
the TWPM is about 4.9 GHz with parameter of Table 1. The
model parameters of the hyperabrupt varactors of Fig. 2 are
defined as [9]: i

R.s substrate and bond resistance;

L., series inductance;

R; p-n junction resistance;

C; junction capacitance;

Cy  projected zero bias voltage capacitance;

~  junction doping profile exponent;

®  junction built in potential.

Within a limited interval, the junction capacitance C; of a
varactor diode as a function of the applied reverse voltage U
can be approximated by ‘

Co

i) = 1+ U/3)

6]

In Fig. 3, relation (1) represents the straight line. For
hyperabrupt GaAs junctions, the exponent -y is approximately
2 and the junction built in potential & = 1.3.

The curve of Fig. 3 shows an average capacitance versus
bias voltage V.9 for 50 packaged varactor diodes. It should be
pointed out that the measured C-V characteristics of 50 var-
actor diodes presented significant dispersion in some regions
(>50 %), but for the Volterra series analysis the averaged
curve of Fig. 3 and the relation (1) are used. Relation (1) is
valid for values of V,0 between 2.7 and 4.7 V (Fig. 3). Table 1
summarizes the values of the parameters that are used for the
Volterra system model of TWPM.

These values are obtained through a series of measurements
(dc and S-parameter) on a number of varactor diodes. Pre-
liminary studies based on the calculation of the scattering
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parameters of the whole structure (TWPM) have permitted
the optimization of the parameters of the transmission line
Z. and 7 and the number of varactors M — 1 to insure
low input and output VSWR. It appears that the actual value
of series resistors R., is higher than the value taken from
the calculations, which is responsible for the slightly higher
insertion loss in the experimental results. The complete model
of the TWPM is illustrated in Fig. 4.

The input signal e(t) is composed of a carrier signal S,, a
modulating signal S,,, and a dc bias voltage V,°. Due to the
ladder structure of the circuit, recurrence relations between the
currents and voltages at different nodes can be established and
the Volterra kernels for the output voltage can be calculated.

III. THE VOLTERRA SYSTEM APPROACH

We will show that the Volterra system theory [10] is a
powerful tool and can be used to analyze the behavior of
the circuit, characterize its nonlinearities, and calculate the
intermodulation products. The Volterra series expansion of one
variable of the circuit has normally an infinite number of terms.
Depending on the nature of the nonlinearity and the accuracy
of the approximation we want to reach, a limited number of
terms can be used, and we thus get a polynomial system. In
the present case we truncated after the third term giving rise to
a third-order polynomial system. This approximation will be
justified by the good correspondence between the model and
the measurements done. Each term of the truncated serie is
characterized by its kernel, which in turn can be defined either
in the time or Laplace domain. We use the Laplace domain
representation and define the three kernels related to the output
voltage Usyi(p) by: Héﬁ,z = HZ(\Z,l),n = 1,---,3. Once we
have computed these kernels, temporal responses and output
phase characteristic of the TWPM will be evaluated. In order
to give some hints about the Volterra kernels computation,
we introduce the following notation according to the circuit
of Fig. 4: H ,g”) (p1,--+,pn) is the nth-order kernels of the
kth cell voltage Uy, G;v") (p1,--+,pn) the nth-order kernel of

I, and J,E")(pl, «++,pp) the nth order-kernel of the charge
@ in the kth nonlinear capacitance C;. The charge is given
by Qr(Ux) = C;(Ux)Ur = WUyi). A third-order Taylor
expansion of the function h(U) around V2 is given by h(U) =

231 an (V) AU™ with U = V0 + AU, where a,(V2)

represents the coefficient of the nth term of the polynomial
approximation of h(U). These coefficients vary as a function
of the bias and so do the Volterra kernels!. From h(U), we
can compute the following relations between .J ,E") (p1,--Dn)

and H,En)(pl, c L Pa )

I =a BV (py)
T = B (p,p) + e HP (o) B (p2)
I =a1HS (p1, p2,pa) + az(HP (00) HE (92, p3)
+ H]E:l)(pg)H;(f) (p1,p2))
+agHYD (p) HY (p2) H{Y (ps). 2)

UExplicit dependence in H{") = HJ(\;) expressions on V,2 will be avoided

in later sections.
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Fig. 3. Typical capacitance variation of a hyperabrupt varactor diode as a function of the applied reverse voliage V0.

™1

Fig. 4. The model TWPM.

The voltage applied to one diode is U and the current is
Ip = Ipc,;+Ipg, where Ipc, is the current across the capaci-
tance C; and Ip R, is the current across the resistance R;; thus,
we have U = U; + (Ros + Lesp) (U; + RjpEiy a;UL)/R;
where Uj is the voltage applied to C; only. Neglecting the
current across the resistor R;, we can define the impedance of
the linearized diode as Zp = U/Ipc;. Finally the impedance
Zp[p] = (Res + Lesp) + R;/(1 + paiR;) in parallel with
the two impedance C; will be called Zpr. Due to the
ladder topology of the circuit, we can establish the following

reccurence relations between? G,(:gl and H ,5").

2The square bracket [p] refer to Laplace argument p in impedances like
quantities.

With Pr@n) =
relations:

5.1 pr we get the following reccurence

H™ (o1, pn)
= H (01, ,00) = G (01, 00) Zrlpmm)] 3)
ch?l(p17 "t Pn)

= Gl(cn) (p17 T ’pn) - Jlgn)(pla t :pn)pZ(n)' (4)
with Zr[p] = Lp. In (4), the term a1p represents the inverse
of the impedance of 'the linearized diode and must be replaced
by 1/Zp[p] as we have mentioned above. These relations
will be useful in the computation of the second- and third-
order kernels. Let us define the following matrices in order to
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simplify the notation for the kernels:

nhﬂz[ ! Zrlpse)
1/Zprlps@] 1+ Zrlpsw)/Zorlpse)]
&)
AN [pl =TF(1,1) + T (1,2) /Ry,
Ab[pl =TF(2,1) + T(2,2)/RL,
A5 [pr,p2] =T5(1,1) + T5(1,2) /Ry,
AS,[p1,p2] =TS (2,1) + T5(2,2)/ Ry,
A% [p1,p2,ps] =T5(1,1) + T5(1,2) /Ry,
ASylpr, p2,ps] =T5(2,1) + T5(2,2)/ Ry ©)

We are now ready to compute the Volterra kernels HJ(\Z).
The first order kernel is simply the 1mpu1se response of the
linearized circuit and is given by H (Elll)t = Uy/E

where F is the input signal in the Laplace domam The relation
between the vector (U I;)T and (Uys In)T is

Uy M1 Unm
(%) =m=(%) "

and the boundary conditions on the circuit are

Up=U1+ 1127 ®
E =Uy+ Rsh )
U =Rply (10)

and thus with (7)-(10) we get

HEY, = (AMLip) + (Zr[p] + Rs)AM 1 [p)) .

The second-order kernel is computed with (2)-(4) and we
obtain

(11

H(Z)
[P17P2] (G(z) )

M—-k-1

+ Y T(pa,pol
n=1

0
X —k—n —k—n
(azpz(z)A% Fonipi| Ak [p2]HJ(\})(p1)H](VII)(p2)>

0
) 12
+(a2pz(2)H WA, ) ) (12)

The boundary conditions on the second-order kernels are
H? = -RsGP HY = HP + G(Z)ZT[pg(Q)] and
H (2) GSW), so we get the relation between G ) and
H%) H(Z) = —(Rs + ZT[pE(z)])G( ). This last expression
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with (12), computed for £ = 1, gives the result for the
second-order kernel
[pl p?] }

HJ(\;) (Pl,Pz)

(Rs + Zr[ps))) Pic + P1H
“p1,p2] + (Rs + Zrlps(2)]) 423

xHﬁ@ﬂiﬂm) (13)
with the polynomials Pi¢ and Pig given by
M-2
Pig = Z T (1 2)a2p2(2)AM k= 1[])1]44%_]9‘1[])2] (14)
k=1 ’
M-2
Pig = > T§(2,2)a0ps) Al p1lAY 7 [pa]
k=1
+ ax(ps(2)) A1 P AN " Hpal. (15)

To calculate the third-order kernel, the same procedure as
for the second-order gives the final result, shown in (16) at
the bottom of the page, with the polynomials Pog and Pog
given by

M-2

Pog =3 T5(2,2)(V2ng1 + V3op1) + V21 + V31 (17)
n=1
M~2

Py = > T3(1,2)(V2ni1 + V3npa).

n=1

(18)

If we introduce the notation Hz(\? (p1,p2) =
B[pl,pg]HJ(\,ll) (pl)HI(é) (p2), we have the relations
(19), (20) for polynomials V2 [p1, pa, ps] and V3[p1, p2. 3]

V3 = aspz(s)A%“’“[pl]Azl‘{‘kUag]A{‘{—k[pg] (19)
VQk=aﬂ&@ﬁA%'ﬁmKAM;k@mdebmpd
+ P1 [P27P3] + P1 )[p2, ps))
“*[ps](A31 " [p1, p2] Blp1,p2]
+a mmﬂ+ﬂgmmm} (20)

The polynomials Py, Par, Pig, and Py in py are func-
tions of the parameters of Table I and of the coefficients
an(V9),n =1,.--,3. The output voltage in the time domain.
Uous (t) is the sum of three terms depending on the Volterra
kernels hgﬁ%(tl, cety) = L7 [Héﬁz(pl, -+, py)] and the
input signal e(t): wous(t) = u1(t) + ua(t) + us(t) where

T
un®) = [ Hon e a)et - o)
—o0
ve(t —op) doy - doy, 21
for n = 1,2,3. In order to compute the nth-order time

response u,(t), we have to evaluate one inverse multiple
of the kernel H™)(p1,--,pn) and

out

Laplace transform £-1

(BRs + Zrlps)]) P2c + Pon

H(3) , -
M (pl p2) A%'l[phpz,pg,]

+ (Rs + Zrlpsa)])Ass~

HP (p)H (p2)HSY (03)  (16)

l[Pl,pz,psl}
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Fig. 5. Calculated results showing the formation of shock waves in TWPM (fo =

is the output signal.

n integrals. We can simplify this by using the so-called
associated transform [10, Theorem 2.7]. The Laplace transform
of the output voltage can be written by the sum of the
following three terms:

Uoui(p) = Ui(p) + U2(p) + Us(p) (22)
where
Us(p) = H 2 (p) E(p)
0aip) = [ HEo1,0 = p) B B = 1) ds 4

(23)

Us(p)=/ FHii)t(pl,pz—pl,p—pz)E(pl)
I'x

-E(p2 — p1)E(p — p2) dp1 dp2 (25)

and T is the imaginary axis. The relations (21)—(24) will be
used to calculate the response of the modulator in the time
domain. They require only n — 1 integrations for the nth-
order term and one simple Laplace transform E(p) = L]e(t)]
and inverse Laplace transform uout(t) = L‘l[Uout (p)]- The
nth-order kernel is proportional to the product of n first-order
kernels as it can be seen from (13) and (16). Moreover the T,
are symmetrical in pg, so the nth-order kernel is symmetrical
in pg. This property allows us to reduce the computation
complexity.

IV. TIME DOMAIN RESPONSES

Several authors [7], [11]-[13] have studied the formation
of shock waves on the nonlinear delay line of Fig. 1. To
ensure that the third-order Volterra model describes the circuit
behavior correctly, the time domain response of the circuit is
calculated and compared with the experimental results. First
relations (21)-(24) are used to compute the response in the
frequency domain. The temporal response is then obtained by
inverse Fourier transformation. At a dc bias of 4 V,a 1.5V

Time [ps]

1 GHz). The bold line is the input and the square marked line

peak-peak sine wave is fed on the line. The calculated and
experimental results are shown in Figs. 5 and 6, respectively.

Keeping in mind that the experimental results are obtained
with an additional 10-dB attenuation and that the phase dif-
ference was adjusted manually to about 180° in order to
clearely observed both waveforms, a closer look at Figs. 5
and 6 reveals that the calculated and measured results are in
good agreement.

The compression phenomena has already been observed by
Rodwell et al. [3], [6], [8], Freeman and Karbowiak [12], Jdger
and Tegude [13] or Camacho-Pefialosa and Molina-Fernandez
[14] . A comparison with results of [14], in which they use a
harmonic balance analysis, and those of [13], in which they
use partial differential equations, also confirms that the third-
order Volterra model can correctly represent the behavior of
the delay line, provided the applied signals are limited to the
region where the junction capacitance of the varactor diodes
can be represented by (1). The oscillations shown in the output
waveforms of [14] and [13] could also be reproduced with
the Volterra kernels using smaller values of R, lower input
frequencies fo, and small values of the bias point V0.

V. PHASE MODULATION

Here, the input signal e(¢) is composed of a carrier signal
S.(t) = V,cos(wot) and a bias voltage V2. The carrier
frequency fp is an important parameter and should be cho-
sen far away from the cutoff frequency. As it was already
mentioned, the Volterra kernels depend on the bias voltage
H™ = H™ (V). Phase modulation is characterized by
calculating and plotting the phase ¢ of the output signal as a
function of the bias voltage V,, for a given carrier frequency.
The output signal S(wo) in the frequency domain that can be
calculated from relations (21)—(24) is given by

S(UJO) = Z On(v;'os LUO> = S()e]‘p(VrO’WO) (26)
n=1
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with _fo = w0/27r
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With the Volterra series being limited to the third order, we
obtain

Vi ), Vi) oo, w0 i
v (5 | Howo) +3( 5 ) Hedl(Gwo, —jwo, jwo)

2
(23)
Vi\? o
Cr = (-27:) HE) (jwo, jwo) 29
ViN? 3
Cs ™ (7> HG) (jwo, jeo, jwo) (30)
C,~0 for n>3. 3D

The coefficients C,, depend on the bias voltage and the
carrier frequency. Finally, the phase is obtained by

P(V;?,wo) = Arg[C1(V;?, wo) + Ca (V. wo) + C3(V,?, wo)].
(32)
Fig. 7 shows the normalized phase at the output of TWPM

as a function of the bias voltage for three different frequencies
and an input signal of 100 mV peak to peak.

1B88ps - /diwv

1 GHz).

It is noted that for the carrier frequencies of 1 and 2 GHz
the calculated results are in close agreement with measured
ones. At 3 GHz the discrepancy between the two results
become more important, which is mainly due to the increase
of dispersion in the experimental delay line. Same type of
nonlinearity is observed in both results, which of course in a
multitone phase modulation scheme will produce harmonics
and intermodulation products. The next section is devoted to
the study of these distortions.

VI. HARMONIC AND INTERMODULATION DISTORTIONS

Distortion produced by TWPM are high order harmonics
(HD, and H Dj) and intermodulation products (IM D3 and
IMDsq), which are studied in this section using the usual
two-tone test.

A. Harmonic Distortions

Assuming a bias voltage V°, the phase at the output which is
defined by (16), is approximated by a Taylor series expansion
around V,°. For a given input signal E(t) = S.(t) + V,°, the
phase can be written as

© Lk (Y0
oV V2,1 = 30 E Ym0y ok ity 33)
k=0

k!
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B. Intermodulation Distortions
For calculating M Doy and IM Dsq, a two-tone test is
"'%o employed [9]. The same conditions as in Section III-D are
= assumed with the only difference that S.(¢) is composed of
) . : ] two signals of slightly different frequencies
E Optimal Bias ] g ghtly
g ] Se(t) = V,(cos(2m f1t) + cos(2m fat)). (37)
g ]
=3 3
g The phase is now given by
Q ]
= 1 . o0
] oV, V), 1) = Z Cy cos((2mm f1 + 2l f2)t). (38)
v} ORISR TN (ST ST SR S AT T YN SO HNT VS S T DU T S B PN T B k:|m|+|l|=0
424 428 432 436 44 444 448 452
Bias Voltage [Volt] The coefficients Cj, which are calculated in Appendix B,
Fig. 8. The mean square error as a function of V,*. enable us to define the M D’s. Finally
2()0(3)(‘/0 (u())‘/2
IM Doy =~ T2 L 39
or * ’&P(D(VTOMO)VT a0V avs|
) 6(p(3)(vo wo)v3
0 4y — IMDg; = - = . 40
o(V, V2, 1) = Y Cicos(lwot) (34) 21 l&o‘”(%",wo)w 5O (VT ) V3 (40)

=0

where p(F) = d*/d(V0)*

After some algebra [see Appendix A, (A1)—(A3)] the har-
monic distortion terms H Dy and H D3 are found, and given
by the following:

602 (VO V2
Do o ror 35
HD l24<p(1)(Vr°)Vr+3s0(3>(Vr°)VT3 G
and
(3)(1/0\ /3
PN (V)Y
HDs3 ~ . 36
° (24w<1>(v,9>w+3<p<3>(vr°>vr3 G0

Once again the coefficients (*)(V/9) depend on the Volterra
kernels [see Appendix A, (A1)-(A3)].

VII. PREDISTORTION CIRCUIT

In this section we study a predistortion circuit, which when
used with TWPM, will result in an improvement of the
linearity and consequently in an important reduction of the
distortions.

A. Design of the Predistortion Circuit

Once again, (16) is replaced by a second-order Taylor
expansion P»(V,°, V*), around a bias voltage V*. It can
be shown that there exists an optimal bias point where the
mean square error between the calculated and approximated
phase [|p(V;?) — Po(V;), V)|, is minimum (Fig. 8). This
optimum bias is then chosen for further developments.
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The following is the second-order Taylor approximation of
the theoretical curve of Fig. 7 for fo = 2 GHz

PV, V) = (Vi) + oM (VI - V)

@y ,
+ 4 é r ) (VTO _ ‘/;*)2 (41)
or
Py (V2 V) = ap + a1V,2 + aa (V)2 42)

The optimal bias point is V,* = 4.469 V. The polynomial
coefficients «; in (23) depend on the Volterra kernels. The
next step is to find a voltage transformation V0 — VO (V0
being the distorted voltage), such that the new phase ¢(VT°)
is approximately linear, i.e., 3(V,?) & bo + b1 V0. In the bias
interval [V;2, V%] one obtains

o = VRV = VIV,
VL=V
by = PV = (V)
VeV

(43)

44)

By taking ¢(V,0) & Po(V2, V*) with V* being the optimal
bias, it is easy to show that the desired transformation is given
by

V2 = V2 4+ k(V; ~ Viuin)®

45)
with
o
k=5 (46)
Vi =/ 2222, 7
a2

If we assume that the transformation in (26) is also valid
for ac voltages, we can decompose the voltage V' into a dc
VO and ac V,. part: V = V¥ 4+ V., and when in (26) V,? is
replaced by V' the following is obtained:

V= (VO + kAV?) + Va1 + 26AV) + KVE  (49)

or

V = Vi + AoVae + A1V (49)

The AV, which is given by AV = V0 —V,;,, is determined
by the maximum amplitude of a modulating signal to insure a
peak phase excursion within the voltage range of 2.7-4.7 V.
The modulating signal S,,,(¢) goes first through a predistortion
circuit before getting combined with the carrier signal S.(t)
and fed into the modulator. The linearized phase for fo =
2 GHz, V) = 4469 V. k = —0.735 and Vi, = 4.345 V
(resulting in the following predistortion coefficients: Vy. =
4578 V, Ay = 0.559 and A; = —0.735 V1) is shown in
Fig. 9.

Obviously with predistortion the linearity of the modulator
improves considerably. In the next section the IMD’s with
and without the predistortion circuit are calculated.
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Fig. 10. Comparison of the intermodulation products IMD2($) and
IM D21 (o) between the linearized and the nonlinearized modulators.

B. Evaluation of the Linearity with the Predistortion Circuit

In this section the intermodulation products (I M Dsqy and
IMDgjy) are caleulated from (21) as a function of the modu-
lation depth m4 (with respect to AV = 300 mV) around the
optimum bias voltage. Fig. 10 shows these products for both
the linearized and the nonlinearized modulators, for a carrier
frequency of 2 GHz

As a consequence of improvement in the linearity of the
modulator by the predistortion circuit, an important reduction
in the intermodulation products is achieved. For instance for
a modulation depth my = 20%, a decrease of about 70 dB in
IM Doy and more than 125 dB for 1M D5y is obtained.

VIII. CONCLUSION

We have used the third-order Volterra series to analyze the
behavior of a broadband microwave phase modulator, which
is principally a nonlinear delay line. The modulator consists
of a high-impedance transmission line shunted by a number
of hyperabrupt varactor diodes at regular time intervals.

The structure is analyzed in both the time and frequency
domains and results are in good agreement with the measure-
ments. A method based on the Volterra kernels is used to
calculate the harmonic and intermodulation distortions. After
characterizing the nonlinearity of the phase versus voltage, a
predistortion circuit is proposed to linearize this characteristic.
A simple method is then presented to determine the parameters
of the predistortion circuit. Analysis of the modulator with the
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predistortion circuit reveals the improvement in the linearity
and decrease of the intermodulation products.

APPENDIX A

Relations defining harmonic distortions are derived here.
With the following notation ¢(V.?) = ¢(V.% wg) and F; =
go(i)(V,,O)/z’!, one can find the expression for Cq; and Coyyq

Cu = Zngv%a%l) and Cyyg = ZFZHlV;«QHlbngl)
1=l Py
(AD)

where the coefficients a( ") and bg}il are given by the recur-

rence law
2% 2i—1 21
afy? = La(npSo D +650)

4G = Haal) + off),) 0,500
(A2)
and
a(l)=2 for 1=0
all)=1 for I=1,---,i—1
a(l)=0 for l=i. (A3)
© _

The initial value for the iterative calculation of (A2) is a;
1. The harmonic distortion of the phase associated with the
frequency kfy is defined by the following

Ck
HD; = A4
Ll ron (A4)
APPENDIX B

The expressions for /M Ds that are derived here refer to
Section III-D. The same notations as in Appendix A are taken
here. In its most general form of the phase of the output signal
in a two-tone modulation scheme is given by

|m|+[t]=2¢

oo
03
k=0
1=0,---,k

-cos((2mm f1 + 2w f)t)

%) 2k+41
2k--1
+ E Fop V2

k=0 Z

fm|+|l|—21+1
1=0,-

-cos((2mm f1 + 2lx f2)1).

A more closed form of (Bl) is given in (38) where the
coefficients Cy, k = |m| + |!|, are defined as

2k

>

(2R
Clmil

(Vi V2,

(2k+1)
ity

(BI)

B N ok o(25)
Con=jml+)1| = ZF%VT Z Cimip (B2
k=n |m+[1|=2n
and
B © ket l (2k+1)
Oamampmisit = Y Porna V30 oy
h=n [ +if=2n+1
(B3)

The following terms defining c(")“ll are used to calculate
IMPyy and IM Py :cf)) =1, &8 =1, 82 = 1/2, {2 =1,
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) = 1, ) = 1/4, & = 3/4, & = 9/4. The

intermodulation distortion of order (m, ) or I MD,, is given
by the following relation:

= 5 (F)
> BV

k=|m|+|1]

k odd or even

Z Fp VD
k odd

IMD,, =

(B4)
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